Design of floating wind turbine system with DeepLines Wind

GDR-EMR : Journée Eolien Offshore

Principia – Main activities

Offshore engineering activity

R&D to basic and detailed design

Expertise & rules justification

Expertise & simulation studies In Nuclear

Expertise & analysis

DeepLines Wind (in partnership with (iP (in partnership))

Validation

Design Considerations

Floating system

DeepLines Wind

Wind turbine modeling software based on DeepLines solver

New elements

- Blades, struts and tower: beam elements
- Control
- Specific aerodynamic models

FEM: Lagrangian Formulation

- Defines the local reference at this node: $\vec{d}_{xi} = R_x(\vec{\theta}_x)\vec{e}_i$
- ***** Let the rotation vector be $\vec{\theta}_x = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$ and the Rodrigues' formula is written as: $\mathbf{R}_x(\vec{\theta}_x) = I_d + \frac{\sin\theta}{\theta} \begin{pmatrix} 0 & -\theta_3 & \theta_2 \\ \theta_3 & 0 & -\theta_1 \\ -\theta_2 & \theta_1 & 0 \end{pmatrix} + \frac{1-\cos\theta}{\theta^2} \begin{pmatrix} \theta_2^2 + \theta_3^2 & \theta_1 \theta_2 & \theta_1 \theta_3 \\ \theta_2 \theta_1 & \theta_1^2 + \theta_3^2 & \theta_2 \theta_3 \\ \theta_3 \theta_1 & \theta_3 \theta_2 & \theta_1^2 + \theta_2^2 \end{pmatrix}$

 $O\vec{P} = \vec{x}_o(s)$ $O\vec{M} = \vec{x}_o(s) + \vec{x}^* = \vec{x}_o(s) + \mathbf{R}(\vec{\theta}_x)\vec{\xi}^*$ $\Omega_{\xi} \qquad O\vec{P} = s\vec{e}_{3} \\ O\vec{M} = s\vec{e}_{3} + \vec{\xi}^{*}$

Infinite rotation handling : 2 options

Option 1

- Updated Lagrangian Formulation
 - The reference is the previous step (static or time)
 - The unknowns are the variation from the reference position
- Problem : adaptation of the code

Option 2

- Apply a transformation when necessary at the entrance of the step
- Proposed by Cardona, A., Gerardin, M., 1988
- Criteria on the norm of the pseudo-rotation vector to stay below 2π
- Introduce an updated pseudo-rotation vector:

$$\vec{\theta}_x^* = (1 - \frac{2\pi}{\left\|\vec{\theta}_x\right\|})\vec{\theta}_x$$

Pseudo-rotation vector

- Pseudo-rotation vector becomes discontinuous with time at a given node
- The quantities rotational velocity and acceleration are continuous
- Numerical time marching scheme does not damp the results (constant rotational speed with constant moment)

Monitoring

Hydrodynamic/Mechanical coupling

 Validation with respect to model test : anchored buoy coupled motion (2007)

Validation on OC3 cases Comparisons with FAST

OC3 wind turbine with rigid foundation

- Blades : 3 * 34 beam elements damping 0.5%
- Shaft : 1 beam element damping 1%
- Tower : 20 beam elements damping 0.3%
- Nacelle : rigid body (RB) with inertia matrix
- Hub : RB with inertia matrix
- Flexible tower / nacelle coupling

Load cases

- HH1: constant wind speed: 2-25 m/s Vertical gradient 0.14
- HH2: Linear ramp 5-50 m/s yawed conditions @ 20°
- HH3: Extreme operating gust 25m/s
- NTM1: 3D turbulent wind 11.2 m/s

Variable ID	Description	Unit
'TTDspFA'	fore aft nacelle displacement	meter
'TTDspSS'	side to side nacelle displacement	meter
'RootMxc1'	blade root moment due to the rotor in plane forces	kN.m
'RootMyc1'	blade root moment due to the rotor out of plane forces	kN.m
'TwrBsMxt'	tower Base Moment due to the side to side rotor force	kN.m
'TwrBsMyt'	tower Base Moment due to the rotor fore-aft force	kN.m
'TwrBsMzt'	tower Base Moment in yaw	kN.m
'RotSpeed'	rotor rotational speed	rpm
'RotThrust'	rotor thrust	kN
'BldPitch1'	blade pitch angle	0
'GenPwr'	generated power	kW

NTM1 3D turbulent wind@11.2 m/s – time series

OC4 phase 1 - LC 5.6

PRINCIPIA/ Deeplines WT

Load Case	Enabled DOF	Wind Conditions	Wave Conditions	Analysis Type	Initial Conditions
5.6	All, Rotor speed and blade pitch via con- troller	Steady, uniform, no shear: V _{hub} = 8 ^m /s	Regular stream function (Dean, 9th): $H = 8 m$, T = 10 s	Periodic time-series solution	$\Omega = 9 \text{ rpm}$ $\Phi = 0 \text{ deg}$ $\Theta = 0 \text{ deg}$ wave simulation starts from crest at x = 0, y = 0 (global system)

Structure Deflection

Transition Piece Fore-Aft Deflection

TPX [m]

35 OC4 - Phase 1 - LC 5.6 Rev4 - 10.02.2012 - 08:29

Aero loads on Tower

Tower Top Fore-Aft Shear Force

29 OC4 - Phase 1 - LC 5.6 Rev4 - 10.02.2012 - 08:29

YawBrFxp [kN]

OC4 phase 2

C	n	d	0
~	v	u	С.

- OrcaFlex
- OrcaFlex
- OrcaFlex
- CHARM3D + FAST

OPASS + FAST

Simo+Riflex+Aerody

- Bladed 4.3
- WAMSIM
- HAWC2
- Bladed 4.3
- FAST
- **3DFLOAT**
- FAST
- SWT
- hydro-GAST
- FAST
- FAST + OrcaFlex
- GH Bladed
- DeepLinesWT
- DeepLinesWT
- SIMPACK
- CAST
- UOU + FAST
- Wavec2Wire

Table 4:	Load-Case	Set 2,	Inverted	Pendulum
----------	-----------	--------	----------	----------

Load Case	Description	Enabled DOFs	Sim. Length	Wind Condition	Wave/Current Condition	
2	Inverted pendulum (flexible support structure; rigid nacelle, drivetrain, and rotor; generator locked)					
2.1	Deterministic waves	Support structure	60 s	No air	Regular Airy: $H = 6 \text{ m}$, $T = 10 \text{ s}$	Time series
2.2	Stochastic waves	Support structure	60 min	No air	Irregular Airy: $H_s = 6 \text{ m}$, $T_p = 10 \text{ s}$, $\gamma = 2.87$, JONSWAP spectrum	Time-series- generated PDFs and PSDs
2.3	Current only	Support structure	N/A	No air	Surface = 0.5 m/s, 1/7 th power law decrease with depth	Quasi-steady equilibrium position and loads
2.4	Current and deterministic waves	Support structure	60 s	No air	Regular Airy: H = 6 m, T = 10 s waves; Current at surface = 0.5 m/s, 1/7 th power law decrease with depth	Time series
2.5	50-year extreme wave	Support structure	60 min	No air	Irregular Airy: $H_s = 15.0 \text{ m}$, $T_p = 19.2$, $\gamma = 1.05$, JONSWAP spectrum	Time-series- generated PDFs and PSDs
2.6	RAO estimation, no wind	Support structure	60 min	No air	White noise, <i>H</i> _s = 6m	Time-series- generated "effective RAOs"

OC4 phase 2

LC 2.2 – Irregular Wave – Mooring Response

• Larger response for dynamic mooring models – excitation of mooring natural frequencies?

- Below wave frequency, Morison-based models show more response at platform frequencies
- At pitch frequency, see separation into three groups: QS+QD, Dyn+QD, Dyn+Mor

NATIONAL RENEWABLE ENERGY LABORATORY

OC5 phase 1 and 2 Model test: Wave Forces

Floating windturbine

Statoil Hywind

- Beam model: mooring lines, floater, tower, blades, shaft,...
- Floater beam modeling calibrated with a potential model
- Time domain simulation of the whole coupled system (hydro/aerodynamic loadings and turbine controller)
- Large number of ULS, FLS & ALS analyses
- Verification of design criteria (acceleration, pitch, offset, angles, etc...)
- Mooring design (extreme and fatigue)
- Floater, Tower design (extreme and fatigue)
- Comparison and verification of the simulations with Company and turbine manufacturers' software.

DeepWind Conference – Jan 2016

Hydrodynamic

Low impact on blade loads

Low impact on Mooring lines

Hydrodynamic

Considerable impact on **Nacelle acceleration Tower loads** platform loads

Bladed Interface

Specificity of floating turbine

IT issues

Cross Validation

- Aerodynamic / Controller
 - Onshore cases
 - Offshore cases
- Hydrodynamic
 - Model Tests
 - Prototypes
- Hydrodynamic simplified model

Simplified aerodynamic model

- Turbine / Cd / Constant load
- Extreme / Fatigue analysis

Load Cases

Turbine vs Mooring / Structure design

10 min / 3 hours

Conclusion

Floating wind turbine

- Interaction of two disciplines
- Two designs in one with their own focus
- Communication / Feedback
- Model
 - Keep in mind the objective of your model
 - Choose the proper simplifications

